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Abstract

We derive the Camassa–Holm equation (CH) as a shallow water wave equation with surface tension in an
asymptotic expansion that extends one order beyond the Korteweg–de Vries equation (KdV). We show that CH is
asymptotically equivalent to KdV5 (the 6fth-order integrable equation in the KdV hierarchy) by using the non-
linear/non-local transformations introduced in Kodama (Phys. Lett. A 107 (1985a) 245; Phys. Lett. A 112 (1985b)
193; Phys. Lett. A 123 (1987) 276). We also classify its travelling wave solutions as a function of Bond
number by using phase plane analysis. Finally, we discuss the experimental observability of the CH solutions.
c© 2003 Published by The Japan Society of Fluid Mechanics and Elsevier Science B.V. All rights reserved.

1. Introduction

We study the irrotational incompressible ?ow of a shallow layer of inviscid ?uid moving under
the in?uence of gravity as well as surface tension. Previously Dullin et al. (2001) studied the case
without surface tension, which in the shallow water approximation leads to the Camassa–Holm
equation (CH). This is the following 1+1 quadratically non-linear equation for unidirectional water
waves with ?uid velocity u(x; t),

mt + c0mx + umx + 2mux + �uxxx = 0: (1.1)
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Here m= u−	2uxx is a momentum variable, partial derivatives are denoted by subscripts, the constants
	2 and �=c0 are squares of length scales and c0 =

√
gh is the linear wave speed for undisturbed

water at rest at spatial in6nity, where u and m are taken to vanish. Setting 	2 → 0 in (1.1) recovers
the Korteweg–de Vries (KdV) equation of Korteweg and de Vries (1895).
Eq. (1.1) was 6rst derived in Camassa and Holm (1993) by using asymptotic expansions directly

in the Hamiltonian for Euler’s equations governing inviscid incompressible ?ow in the shallow
water regime. It was thereby shown to be bi-Hamiltonian and integrable by the inverse scattering
transform. Its periodic solutions were treated in Alber et al. (1994, 1999, 2001) and references
therein. Before Camassa and Holm (1993), families of integrable equations similar to (1.1) were
known to be derivable in the general context of hereditary symmetries in Fokas and Fuchssteiner
(1981). However, Eq. (1.1) was not written explicitly, nor was it derived physically as a water
wave equation and its solution properties were not studied before Camassa and Holm (1993). See
Fuchssteiner (1996) for an insightful history of how the integrable shallow water Eq. (1.1) relates
to the mathematical theory of hereditary symmetries.
Eq. (1.1) was recently re-derived as a shallow water equation by using asymptotic methods in

three diGerent approaches in Fokas and Liu (1996), in Dullin et al. (2001) and also in Johnson
(2002). These three derivations used diGerent variants of the method of asymptotic expansions for
shallow water waves in the absence of surface tension. In accounting for the eGects of surface
tension, we shall derive an entire family of shallow water wave equations that are asymptotically
equivalent at quadratic order in the shallow water expansion parameters. This is one order beyond
the linear asymptotic expansion for the KdV equation. The asymptotically equivalent shallow water
wave equations in this family are related amongst themselves by a continuous group of non-local
transformations of variables that was 6rst introduced by Kodama (1985a, b, 1987). We also identify
four integrable soliton equations amongst the family of asymptotically equivalent shallow water
equations at quadratic order.
Outline. The remainder of this section sets the context for our investigation and discusses the

transformation properties of Eq. (1.1). Section 2 rederives the standard elevation 6eld dynamics for
shallow water waves following Whitham (1974). We then use an approach based on the Kodama
transformation to derive Eq. (1.1) with surface tension in Section 3. Section 4 discusses the relation
of Eq. (1.1) to KdV and other integrable equations, particularly KdV5, the 6fth-order integrable
equation in the KdV hierarchy, and another integrable non-linear equation (4.4) recently derived
in Degasperis et al. (2002). Section 5 discusses the rather rich classes of travelling wave solutions
for Eq. (1.1). Finally Section 6 discusses its physical relevance and the potential for measuring its
special solutions.

1.1. Context

In Dullin et al. (2001) the focus was on the integrability of the equation and its isospectral
properties. The derivation from Euler’s equation in the case without surface tension was brie?y
described. Here we present the necessary details of this calculation. The present derivation also adds
surface tension, which contributes to the coeHcient � in Eq. (1.1).
In the context of water waves in the presence of surface tension there has been an increased

interest in the KdV5 equation and its solitary wave solutions, see Dias and Kharif (1999) for a
review. For Bond numbers 0¡�¡ 1=3 it has been shown that these solutions are not true solitary
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waves which decay to zero at spatial in6nity. Instead, they are generalized solitary waves which
are characterized by exponentially small ripples on their tail, as discussed, e.g., in Beale (1991).
These ripples are shown in Lombardi (2000) to be exponentially small in terms of F − 1 where
F = c=c0 is the Froude number. Numerical experiments of Champneys et al. (2002) suggest that in
the full non-linear water wave problem there are no real solitary waves bifurcating for Bond numbers
0¡�¡ 1=3. For Bond numbers larger than 1=3, one obtains not elevations, but depressions with
negative velocity.
Why derive a higher-order model equation, if these more rigorous, exact, or numerical results

are already available? Or in more general terms: Which is more desirable, an exact solution of
an approximate model equation, or an approximate solution of an exact equation? The family of
asymptotic equations we shall derive here provides more accurate travelling waves than KdV, without
requiring considerably more elaborate models. Thus, although one may obtain less information,
compared to the sophisticated methods beyond all orders, the cost is also less. Including yet higher
order terms in our derivation would lead to equations possessing the same exponentially small
eGects. Thus, one may improve the description of the shape and speed of the travelling wave
without resorting to the more complicated models. That they provide only an approximation to the
true solution shall be taken for granted.
Our inclusion of surface tension has a similar motivation. Although Eq. (3.16) that we shall derive

has some drawbacks concerning the global properties of its dispersion relation for large k, it still
gives improved descriptions for small k and small �. Moreover, the improved simple solutions are
easily obtained and analyzed.

1.2. Transformation properties

Before embarking on its derivation, we shall survey the transformation properties of Eq. (1.1).
First, it is reversible, i.e., it is invariant under the discrete transformation u(x; t) → −u(x;−t). Eq.
(1.1) is also Galilean covariant. That is, it keeps its form under transformations to an arbitrar-
ily moving reference frame. This includes covariance under transforming to a uniformly moving
Galilean frame. However, Eq. (1.1) is not Galilean invariant, even assuming that the momentum m
Galileo-transforms in the same way as u. In fact, Eq. (1.1) transforms under

t → t + t0; x → x + x0 + ct; u → u+ c + u0; m → m+ c + u0; (1.2)

to the form

mt + umx + 2uxm+ (c0 + u0)mx + 2ux(c + u0) + �uxxx = 0: (1.3)

Thus, Eq. (1.1) is invariant under space and time translations (constants x0 and t0), covariant
under Galilean transforms (constant c), and acquires linear dispersion terms under velocity shifts
(constant u0). The dispersive term u0mx introduced by the constant velocity shift u0 �= 0 breaks the
reversibility of Eq. (1.1).
Under scaling transformations of x, t and u, the coeHcients of Eq. (1.1) can be changed. However,

such scaling leaves the following coeHcient ratios invariant,

C(uxuxx) :C(uuxxx) = 2 : 1; (1.4)

C(uxxt)C(uux) :C(uuxxx)C(ut) = 3 : 1; (1.5)
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where C(T ) stands for the coeHcient of the term T in the scaled equation. It is pertinent to mention
that the above ratios are crucial for the integrability of Eq. (1.1) Dullin et al. (2001). See also
Eq. (4.4) and its discussion in Section 4.1.

2. Derivation of the � equation

Our derivation of Eq. (1.1) proceeds from the physical shallow water system along the lines of
Whitham (1974). Consider water of depth h=h0+�(x; t) where h0 is the mean depth, so that z=−h0
at the ?at bottom and z = 0 at the free surface in equilibrium. Denote by uh and uv the horizontal
and vertical velocity components, respectively. The z-momentum balance is

Duv
Dt

=−g− 1
�
@zp with p= �̃

hxx

(1 + h2x)3=2
; (2.1)

where g is the constant of gravity and �̃ is the surface tension. At the free surface the boundary
condition is

D�
Dt

= uv at z = �: (2.2)

Introducing the potential velocity u(x; z; t) = ∇’ we have uh = ’x and uv = ’z for the horizontal
and vertical velocity components. The velocity potential ’ must satisfy Laplace’s equation in the
interior. Eq. (2.2) gives the kinematic boundary condition for the free surface

�t + ’x�x = ’z at z = �:

Eq. (2.1) can now be integrated to yield the dynamic boundary condition

’t +
1
2
(’2x + ’2z) =−gh− 1

�
p at z = �:

The equations for a ?uid are written in a non-dimensionalized form by introducing x= lxx′, z=h0z′,
t = (lx=c0)t′, �= a�′ and ’= (glxa=c0)’′, where c0 =

√
gh0. We are interested in weakly non-linear

small amplitude waves in a shallow water environment and introduce the small parameters �= a=h0
and �2=(h0=lx)2 where �¿ �2¿�2¿ ��2¿ �4. Upon omitting the primes and expanding the pressure
term up to order �2�2, the Euler equations and the boundary conditions at the free surface and at
the bottom take the form

�2’xx + ’zz = 0 in − 1¡z¡��; (2.3)

�t + �’x�x − 1
�2

’z = 0 at z = ��; (2.4)

�+ ’t +
1
2

(
�’2x +

�
�2

’2z
)
− ��2�xx at z = ��; (2.5)

’z = 0 at z =−1; (2.6)

where � = �̃=(h0�c20) is the dimensionless Bond number. The ordering of � and �2 is as speci6ed,
provided that � = O(1).
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The equation for the interior is identically satis6ed by the ansatz,

’(x; z; t) =
∞∑
m=0

�2m(−1)m z2m

(2m)!
@2mf(x)
@x2m

; (2.7)

with an arbitrary function f(x). The velocity potential ’ is expanded at the mean height z = z0,
where  = ’(x; z0), up to order O(�6) as

’=  − 1
2 �

2(z − z0)(z + z0) xx + 1
24 �

4(z − z0)(z + z0)(z2 − 5z20) xxxx

− 1
720 �

6(z − z0)(z + z0)(z4 − 14zz0 + 61z40) xxxxxx: (2.8)

For an expansion at z = z0 = 0, in fact f =  . We will present the derivation with this choice, in
order to make it as transparent as possible. However, the derivation would yield the same result
when expanding at an arbitrary height z= z0 (see the comments at the end of this section). We have
included one more order in �2 in this expansion because in (2.4)  z is divided by �2. The dynamics
of the free surface is entirely determined by the upper boundary conditions which to order O(�4)
read

�t +  xx + �(�x x + � xx)− �2

6
 xxxx − ��2

2
(�x xxx + � xxxx)− �4

120
 xxxxxx = 0

�+  t +
�
2
 2x −

�2

2
( xxt + 2��xx)− ��2

2
(2� xxt +  x xxx −  2xx) +

�4

24
 xxxxxt = 0:

DiGerentiating the second equation with respect to x and introducing the horizontal velocity w =  x

at the mean height z = 0 yields the following set of equations in conservation form

�t + wx + �(w�)x − �2

6
wxxx − ��2

2
(wxx�)x − �4

120
wxxxxx = 0;

wt + �x +
�
2
(w2)x − �2

2
(wxt + 2��xx)x − ��2

2
(2�wxt − w2x + wwxx)x +

�4

24
wxxxxt = 0: (2.9)

Note that the terms to order O(�) are the well known shallow water equations.
As in the derivation of the KdV equation in Whitham (1974) we now restrict to unidirectional

waves by assuming a relationship w = � + jf[�] between w, the horizontal velocity at the mean
height, and the elevation, �. The functional f shall be determined so that the two equations in
(2.9) both reduce to the same single equation for the height 6eld �. The relation w = � + jf[�]
can be considered as an approximate reduced manifold which is tangent to the space of linear
waves moving to the right. Note: allowing leftward travelling waves would violate the hypothesis
that such a relation exists at order �4, due to a coupling between the left- and right-going waves.
See Prasad and Akylas (1997); Marchant (2002); Schneider and Wayne (2000) for discussions of
this point. We expand w in a power-series of �; � and include terms of order O(��2) and O(�4)
to 6nd

w = �+ �A(�) + �2B(�) + �2C(�) + ��2D(�) + �4E(�): (2.10)
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Upon ordering in powers of the small parameters the coeHcients in the transformation (2.10) are
determined by requiring that both boundary conditions in (2.9) are satis6ed simultaneously. We 6nd

O(�) :Ax + ��x = At; (2.11)

O(�2): @x(B− 1
6 (1− 6�)�xx) = @t(B− 1

2 �xx); (2.12)

O(�2): Cx = Ct; (2.13)

O(��2): @x(D − 1
6 Axx − 1

2 �
2
x) = @t(D − 1

2 Axx − 1
2 �

2
x)− ��xxt ; (2.14)

O(�4): @x(E − 1
6 Bxx + 1

120 �xxxx) = @t(E − 1
2 Bxx + 1

24 �xxxx): (2.15)

The 6rst two Eqs. (2.11) and (2.12) are readily solved by

A=− 1
4 �

2 and B= 1
6(2− 3�)�xx: (2.16)

At the next iteration of the expansion, the time-derivatives

�t =−wx − �(�xw + �wx) +
�2

6
wxxx

=−�x − 3
2 ���x − 1

6 �
2(1− 3�)�xxx; (2.17)

that appear in Eqs. (2.11) and (2.12) generate higher order terms which modify the higher order
balances (2.13)–(2.15). These then lead to

C = 1
8 �

3; D = 1
16(3 + 7�)�

2
x +

1
4 ��xx; E = 1

120(12− 20� − 15�2)�xxxx: (2.18)

Under the transformation (2.10) both equations in (2.9) are equivalent to the desired order and one
6nds a single decoupled equation for the height 6eld, or elevation, �,

�t + �x + 3
2 ���x + 1

6 �
2(1− 3�)�xxx − 3

8 �
2�2�x + ��2( 124 (23 + 15�)�x�xx

+ 1
12(5− 3�)��xxx) + �4 1

360 (19− 30� − 45�2)�xxxxx = 0: (2.19)

This is a well known result, which up to this order has been derived for example by Marchant and
Smyth (1990) and recently in Johnson (2002) without surface tension. Note that the same elevation
equation would be obtained by expanding the potential not about the mean depth z0=0, but about an
arbitrary depth z0, see Olver (1983) and Kirby (1997). This still holds, even when surface tension is
included. Thus, the height 6eld equation in this approximation is independent of the depth at which
the horizontal velocity is measured. For simplicity, we have chosen to evaluate the velocity potential
’ at z0 = 0. As a matter of fact, the same elevation equation would also hold if we had chosen a
vertically averaged potential to determine the velocity 6eld u, as done in Wu and Ted (1998).
From the point of view of physically meaningful interpretations of solutions of equation (2.19),

z0 is the depth at which velocity measurements are taken. The above discussion shows that the
evolution equation of the height 6eld (2.19) is independent of this arbitrary measurement location
z0. However, the transformation (2.10) does explicitly contain z0 in relating the height 6eld � to the
measured velocity w.
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3. Transformation to an integrable equation

Eq. (1.1) will emerge as being asymptotically equivalent to Eq. (2.19) after two further steps.
First, we shall perform a near-identity transformation,

�= �[u] = u+ �f[u] + �2g[u];

relating the wave elevation and a velocity-like quantity, u. One may consider u as an auxiliary
quantity in which the transformed equation becomes particularly simple. To obtain the physically
meaningful quantity, �, one must transform back, see below. The functionals f and g are to be chosen
so that they generate the terms proportional to uux; uxuxx; uuxxx and uxxx in Eq. (1.1), afterwards we
apply the Helmholtz operator H = 1− '�2@2x which generates the uxxt term. As in Kodama (1985a,
b, 1987) the functional g[u] is proportional to uxx and f[u] is a linear combination of u2 and the
non-local term ux@−1, where @−1 means integration in x. Thus, together with the parameter ' there
are four coeHcients in this transformation. These shall be chosen so that Eq. (1.1) emerges after a
rescaling of u, x and t.
The near-identity Kodama transformation depends on three parameters 	1; 	2 and (,

�= �[u] = u+ �(	1u2 + 	2ux@−1u) + �2(uxx: (3.1)

Terms of degree n in the expansion parameters � and �2 start contributing at degree n + 1 in
the transformed equation. Therefore no terms of quadratic order are needed in the transformation.
Inserting transformation (3.1) into Eq. (2.19) for the height 6eld � leads at each order to

O(1): ut + ux;

O(�): 2	1uut + 2	1uux + 	2(uxt@−1u+ uxx@−1u+ ux@−1ut + uux) + 3
2 uux;

O(�2): (uxxt + uxxx(( + 1
6 − 1

2 �);

O(�2): 92 	1u
2ux + 3

2 	2(u
2ux + uuxx@−1u+ u2x@

−1u)− 3
8 u

2ux;

O(��2): ( 2324 +
5
8� +

1
3(3	1 + 2	2)(1− 3�) + 3

2 ()uxuxx

+( 512 − 1
4 � +

1
6(2	1 + 3	2)(1− 3�) + 3

2 ()uuxxx + 1
6 	2(1− 3�)uxxxx@−1u;

O(�4): ( 16 (2(1− 3�) + 1
360(19− 30� − 45�2))uxxxxx: (3.2)

As before, we expand the time derivatives to linear order as

ut =−ux − 3
2 �uux − 1

6 �
2(1− 3�)uxxx; (3.3)

uxt =−uxx − 3
2 �u

2
x − 3

2 �uuxx − 1
6 �

2(1− 3�)uxxxx;

uxxt =−uxxx − 9
2 �uxuxx − 3

2 �uuxxx: (3.4)
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This expansion generates higher order terms, leading to

O(1): ut + ux;

O(�): 32 uux;

O(�2): 16 (1− 3�)uxxx;

O(�2): ( 32 	1 +
3
4 	2 − 3

8)u
2ux; (3.5)

O(��2): Ãuxuxx + B̃uuxxx; (3.6)

O(�4): 1
360 (19− 30� − 45�2)uxxxxx; (3.7)

where in (3.6) we used

Ã= 23
24 +

5
8 � +

1
2(2	1 + 	2)(1− 3�)− 3( and B̃= 5

12 − 1
4 � +

1
2 	2(1− 3�):

The 6rst step of the derivation is now complete. In the second step, applying the Helmholtz operator
H = 1 − '�2@2x creates terms with two more x derivatives multiplied by �2. In particular the terms
of order O(�2) are unchanged. These terms are proportional to u2ux and they must vanish for Eq.
(1.1) to emerge. The application of the Helmholtz operator simply recreates the uxxt term that had
previously been eliminated. Alternatively, the same Eq. (1.1) could be obtained by splitting the
time derivative, that is, by partially substituting the time derivative uxxt in (3.2) using its asymptotic
approximations (3.4), as in Peregrine (1966). The order O(�2) coeHcient will vanish, provided the
parameters 	1 and 	2 are chosen to satisfy

4	1 + 2	2 = 1: (3.8)

The order O(�4) terms receive a contribution that arises from applying the Helmholtz operator to
the terms of order O(�2), and this combination has to vanish, so that the 6nal equation does not
possess a uxxxxx term. This requirement determines ' as

'=
1
60
19− 30� − 45�2

1− 3� (3.9)

and in the following we shall consider ' to be given by this function of �. Note that removal of the
highest order term was made possible by introducing the additional parameter ' via the Helmholtz
operator. The remaining terms containing free parameters 	2 and ( are of order ��2 and they combine
additively as

(Ã− 9
2 ')uxuxx + (B̃− 3

2 ')uuxxx:

To ensure equivalence to (1.1) except for scaling we need the relative coeHcients to appear in the
ratio (1.4), so that

(Ã− 9
2 ') : (B̃− 3

2 ') = 2 : 1: (3.10)

In addition we also need to satisfy (1.5), so that

3
2 ' : (B̃− 3

2 ') = 3 : 1:
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These two conditions imply B̃= 2' and Ã= 11'=2. As a result we 6nally obtain the equation

ut − '�2uxxt + ux + 3
2 �uux − 1

2 ��
2'(uuxxx + 2uxuxx) + �2( 16 − '− 1

2 �)uxxx = 0; (3.11)

which can be rewritten in terms of m= u− '�2uxx as

mt + mx +
�
2
(umx + 2mux) + �2

(
1
6
− 1
2
�
)

uxxx = 0: (3.12)

The explicit coeHcients in the Kodama transformation (3.1) are thus

	1 =
7
20

− �
1
5

2− 3�
(1− 3�)2 ; (3.13)

	2 =−1
5
+ �

2
5

2− 3�
(1− 3�)2 ; (3.14)

( =
1
30

− �
1
30
17− 30�
1− 3� : (3.15)

Scaling back to physical variables where u has units of ’x which are ga=c0 = c0a=h0 gives

mt + c0mx + 1
2(umx + 2mux) + �uxxx = 0; (3.16)

where m=u−'h2uxx and �=c0h2(1−3�)=6. By an additional scaling of u by 2 this can be reduced to
the canonical form (1.1). The parameters 	2 and � in (1.1) are given in terms of physical variables
as

	2 = 'h2 = h2
1
60
19− 30� − 45�2

1− 3� ; (3.17)

� =
c0h2

6
(1− 3�): (3.18)

The parameter � changes sign when the Bond number � crosses the critical value 1=3. For later
reference we record the values of �¿ 0 for which 	2 or � − c0	2 vanish as

�	 =− 1
3 +

2
15

√
30 ≈ 0:39696; �* = 1

9 +
4
45

√
10 ≈ 0:39220; (3.19)

respectively.
In the special case c0 =�=0, Eq. (3.16) is called the “peakon equation.” Its peakon solutions are

solitary waves whose derivative is discontinuous at the extremum. These solution were introduced
and discussed in Camassa and Holm (1993). However, the peakon equation is a zero-dispersion case
that does not strictly follow as a water wave equation in a weakly non-linear shallow approximation
from the Euler equation by this technique. Neither a Galilean transformation nor an appropriate
splitting can eliminate the two linear dispersive terms simultaneously. One is always left with a
residual linear dispersion, whose 6nal removal requires the additional velocity shift, u0, appearing
in transformation (1.2).
Johnson (2002) has recently derived the CH equation as a shallow water wave equation in a

super6cially similar way. However, there are fundamental diGerences between the derivations here
and in Johnson (2002). First, the derivation in Johnson (2002) involves the evaluation of the potential
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(2.8) at a particular height z0 = 1=
√
2. Instead of the height z0, the free parameters in the Kodama

transformation (3.1) are used here to obtain the desired equation. But a deeper issue is involved
in distinguishing between the two diGerent derivations. In Johnson (2002) the 6fth-order derivative,
which is an essential part of our derivation, was omitted. In Section 4 we shall show that the CH
equation is asymptotically equivalent to the KdV5 equation, which involves the 6fth-order derivative.
In obtaining (3.16), the free parameters in the Kodama transformation (3.1) and in the Helmholtz
operator were used in transforming away the 6fth-order derivative. However, in Johnson (2002) this
term was simply omitted by using a scaling of � and � that does not allow for �= �2. However, the
particular scaling � = �2 cannot be discarded, as it assures the primary balance of linear dispersion
and non-linear steepening in the KdV equation and is, hence, the backbone for the lower order
balance of the higher order equation (3.16). The scaling we employ and the transformations we use
yield the same result and, moreover, also allow one to study the KdV5 equation (see Section 4).
In order to compare predictions and to compare solutions to physically measurable quantities, the

solutions for the horizontal velocity-like variable u must be transformed back to the elevation 6eld
� by using (3.1). However, the derivation not only used transformation (3.1) but it also involved
application of the Helmholtz operator. Therefore one should check that it is suHcient to simply
invert (3.1). Fortunately, when the inverse transformation u = u[�] of the same form as (3.1) with
u and � interchanged is substituted into (3.12), we 6nd that the coeHcients just reverse their signs.
We conclude that (1.1) is equivalent to the shallow water wave equation (2.19) up to and including
terms of order O(�4).

4. Relation to other integrable equations

The Kodama transformation can also be used to transform the CH equation into the integrable
6fth order KdV equation (henceforth called KdV5). Li and Sibgatullin (1997) show that Eq. (2.19)
for the elevation � can be transformed into the KdV5 equation. Here we shall show that the CH
equation and the KdV5 equation are also asymptotically equivalent under a Kodama transformation.
To this end, we 6rst expand the time derivative in the uxxt-term using the equation itself and then
apply a transformation of the form introduced in Kodama (1985a, b, 1987), namely

u= v+ �(	1v2 + 	2vx@−1v) + �2(vxx: (4.1)

Choosing the values in this Kodama transformation as

	1 =
	2

�
; 	2 = 2

	2

�
; ( = 2	2 (4.2)

transforms the CH Eq. (1.1) into the integrable KdV5 equation

vt + c0vx + 3vvx + 5(vvxxx + 2vxvxx)	2 +
15
2

	2v2vx
�

+ �(	2vxxxxx + vxxx): (4.3)

Transformation (4.1) is singular in the limit � → 0, so that the peakon solutions of CH in this limit
cannot be mapped to solutions of KdV5.
A Kodama transformation of form (4.1) cannot transform the CH equation to the KdV equation

itself. However, Fokas and Liu (1996) show that such a transformation is possible, provided another
term of the form xvt is included in the Kodama transformation. Unfortunately, the term xvt is not
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uniformly bounded, so we shall decline to use it. Were one to use (4.1) to transform solutions of
the CH equation into solutions of the KdV5 equation, the unboundedness of this term would present
a real problem when transforming travelling wave solutions, which move asymptotically in time
toward x = ±∞. Moreover, as we shall see, the term xvt would change the dispersion relation, so
again its use would be problematic. In contrast, to see that transformation (4.1) does not change
the dispersion relation, one may observe that only terms linear in u or its derivatives produce linear
terms in the transformed equation. Similarly, non-linear terms in the equation being transformed will
only create non-linear terms in the resulting transformed equation. Therefore, we may restrict to a
transformation u = v + jL(v) in which L is a linear diGerential operator with constant coeHcients
and the linear equation to be transformed is ut =M (u). To 6rst order, we then have vt =M (v) and
the full transformation gives

vt + jL(vt) =M (v+ jL(v)):

Now the 6rst-order equation may be used to eliminate the time derivatives that are not of order
zero, thereby yielding

vt + jL(M (v)) =M (v) + jM (L(v)):

If M and L commute, as they do when they have constant coeHcients, the 6nal answer is vt=M (v) so
that a linear equation is unchanged. However, including a term of the form xut in the transformation
in general will cause the operators to no longer commute and, thus, the linear equation will be
changed. A proper near-identity transformation should leave the linear part of the equation invariant
and only transform higher order terms. Therefore we do not include terms of the form xvt in the
transformation.
Transforming from KdV5 to CH also involves the application of the Helmholtz operator H =

1 − '�2@2x . As we have just seen, the Kodama transformation leaves the linear part of the equation
unchanged. Applying the Helmholtz operator to an equation does change the linear part, but it still
leaves the dispersion relation unchanged. To see this, let the linear part of the equation be given by
ut =M (u). The new equation is H (ut)=H (M (u)). If H and M are linear with constant coeHcients
this gives H (u)t =M (H (u)) so that with the de6nition m=H (u) we obtain mt =M (m), which has
the same dispersion relation. Note that this is not true if we truncate higher order terms in H (M (u)).
If we truncate, then the dispersion relation will agree up to the order of truncation. For example,
the dispersion relation for (1.1) is a rational function, which diGers from the polynomial dispersion
relation obtained from (2.19). However, by the above argument the two agree up to the desired
order.
We conclude that (1.1) is asymptotically equivalent to the integrable KdV5 equation, and both

of them are equivalent to (2.19) at order O(�4). However, the equivalence of (1.1) to the KdV5
equation breaks down in the limit � → 0, because the transformation as well as the resulting equation
contains terms divided by �. Therefore, the peakon equation cannot be transformed into KdV5.
Using the additional parameter supplied by the Helmholtz operator allows for the removal of the

highest order term while preserving the dispersion relation, which is unchanged by applying a linear
operator to the equation. One advantage of the CH equation over the asymptotically equivalent KdV5
equation is that it is easier to integrate numerically because it does not contain the 6fth derivative.
This is in accordance with the general smoothing eGect of the Helmholtz operator.
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4.1. The b-equation

Recently a new variant of (1.1) was introduced in Degasperis et al. (2002) as

mt + umx + buxm= c0ux − �uxxx; (4.4)

where b is an arbitrary parameter. The solutions of the b-equation (4.4) were studied numerically for
various values of b in Holm and Staley (2003a, b), where the parameter b was taken as a bifurcation
parameter. The cases b=2 and 3 are special values for the b-equation (4.4). The case b=2 restricts
the b-equation to the integrable CH equation of Camassa and Holm (1993). The case b=3 in (4.4)
recovers the DP equation of Degasperis and Procesi (1999), which was shown to be integrable in
Degasperis et al. (2002). These two cases exhaust the integrable candidates for (4.4), as was shown
using PainlevTe analysis in Degasperis et al. (2002). The b-family of equations (4.4) was also shown
in Mikhailov and Novikov (2002) to admit the symmetry conditions necessary for integrability only
in the cases b= 2 for CH and b= 3 for DP.
We shall show here that the b-equation (4.4) can also be obtained from the shallow water elevation

equation (2.19) by an appropriate Kodama transformation. The derivation in the previous section is
essentially unchanged up to Eq. (3.10). The two scaling relations (1.4, 1.5) now read

(Ã− 9
2 ') : (B̃− 3

2 ') = b : 1;

3
2 ': (B̃− 3

2 ') = b+ 1 : 1:

These two conditions imply

B̃= '
3
2

b+ 2
b+ 1

and Ã= '
3
2
4b+ 3
b+ 1

:

The resulting Kodama transformation of the form (3.1) with coeHcients 	′1; 	′2, and (′ are

	′1 = 	1 + 3/

	′2 = 	2 − 6/

(′ = ( − (1− 3�)/
where

/=
b− 2
b+ 1

45�2 + 30� − 19
360

:

Therefore any b �= −1 may be achieved by an appropriate Kodama transformation. Note that when
� = �	, see (3.19), then 	2 = 0, hence / = 0 is independent of b. After this transformation (4.4)
is obtained by further scaling of the new dependent variable u by the factor b + 1. See Holm and
Staley (2003a, b) for discussions of Eq. (4.4) in which b is treated as a bifurcation parameter when
c0 = 0 and � = 0.
We conclude that the detailed values of the coeHcients of the asymptotic analysis hold only

modulo the Kodama transformations and these transformations may be used to advance the analysis
and thereby gain insight. Thus, the Kodama-transformations may provide an answer to the perennial
question “Why are integrable equations so ubiquitous when one uses asymptotics in modelling?”
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5. Travelling wave solutions

The water wave equation (3.16) can be viewed as a hybrid of two diGerent integrable limiting
equations. On the one hand, the limit 	2=0 leads to the KdV equation when including terms of order
� and �2 which supports regular solitons. Thus, the primary physical mechanism for the propagation
of solitary shallow water waves at order O(�; �2) is the balance between non-linear steepening and
linear dispersion. However, the CH equation (3.16) introduces additional higher order combinations
of balance, including the non-linear/non-local balance in the following (rescaled) zero-dispersion
case, whose non-linear dynamics still remains, even in the limit of vanishing linear dispersion, i.e.
c0 = 0 = �, namely,

mt + umx + 2mux = 0; with m= u− 	2uxx: (5.1)

This non-linear/non-local balance produces a con6ned solitary travelling wave pulse,

u(x; t) = ce−|x−ct|=	;

called the peakon. In the momentum variable m it is given by a �-function at x − ct. The peakon
travels with speed equal to its peak amplitude. This solution is non-analytic, having a jump in
derivative at its peak. Peakons are true solitons that interact via elastic collisions under Eq. (5.1), as
discussed in Camassa and Holm (1993). Whereas the KdV equation has purely linear dispersion, its
extension the Camassa–Holm (CH) equation (3.16) possesses the peakon limit (5.1) which evolves
by non-linear balance. Other non-classical solutions such as the travelling waves of compact support
called compactons in Li et al. (1999) also exist in this equation and we will discuss their parameter
dependence in the following.

5.1. Dispersion relation

The interplay between the local and non-local linear dispersion in the CH equation (1.1), or (3.16),
is evident in its phase velocity relation,

!
k
= c0 − �k2

1 + 	2k2
; (5.2)

for waves with frequency ! and wave number k linearized around u = 0. For �¡ 0, short waves
and long waves travel in the same direction. Long waves travel faster than short ones (as required
in shallow water) provided �¡ 0. Then the phase velocity lies in !=k ∈ (c0−�=	2; c0]. At low wave
numbers, the constant dispersion parameters 	2 and � perform rather similar functions. At high wave
numbers, however, the parameter 	2 keeps the phase velocity of the wave properly bounded and
the dispersion relation is similar to the original dispersion relation for water waves, provided that
the surface tension vanishes and � = 0 (see Section 6). Its remarkably accurate linear dispersion
properties give the CH equation (1.1) a clear advantage over the KdV equation (provided � = 0).
We note that radiation is absent in the peakon equation—in this case, linear dispersion is absent
(c0=�=0). For non-vanishing surface tension the dispersion relation describing shallow water waves
is unbounded for large wave numbers, whereas the dispersion relation of Eq. (1.1) saturates to the
asymptotic value c0−�=	2. This property makes (1.1) inferior to KdV5 for non-zero surface tension.
The linear dispersion relation of KdV5 and its unboundedness for high wave numbers allows for
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Fig. 1. Normalized dispersion relations for � = 0:25; 0:35; 0:8 as a function of hk. The full line is the exact phase speed
(5.3); the dashed line is the approximation (5.2).

resonances of a supercritical solitary wave with high wave number linear waves which give rise to
exponentially small ripples at the tails of the solitary wave in accordance with the study of water
wave solution of the full Euler equation, see for example Beale (1991), Grimshaw and Joshi (1995),
Dias and Kharif (1999) and Lombardi (2000). Nevertheless, when k and � are small, we do obtain
improved results regarding the shape and speed of travelling waves, as discussed below (Fig. 1).
The connection to the physical parameters 	 = 	(�) and � = �(�) is de6ned in Eqs. (3.17) and

(3.18). Eq. (3.16) was derived from the original water wave problem by means of two transforma-
tions (2.10) and (3.1), respectively, and the application of the Helmholtz operator. Only the linear
terms of (2.10) and (3.1) and the linear Helmholtz operator could alter the dispersion relation, but
since the transformations and the Helmholtz operator are applied to the whole equation, the original
linear dispersion relation is not altered at all, independently of the actual choice of the coeHcients of
the transformation and of the parameter ', see the discussion in Section 4. Therefore the dispersion
relation (5.2) matches the dispersion relation for water waves up to quintic order. For comparison,
the dispersion relation for water waves developed for small wave number k is

!
c0k

=

√
1 + �h2k2

hk
tanh hk (5.3)

≈ 1− 1
6 (1− 3�)h2k2 + 1

360(19− 30� − 45�2)h4k4 (5.4)

≈ 1− 1
6 (1− 3�)h2k2(1− 'h2k2): (5.5)

Therefore the dispersion relations are in agreement up to 6fth order in wave steepness hk.

5.2. Reduction to an ODE

Travelling wave solutions are obtained by the ansatz u(x; t) = u(s), with s = x − ct. We obtain
after integration,

u′′(� + 	2(2− u)) = Vu− 3
2
u2 +

	2

2
u′2; (5.6)

where the prime denotes diGerentiation with respect to s. We note that the dispersion coeHcient �
is the dispersion coeHcient in the equations after transformation into the rest frame, and 2 is the
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diGerence in the wave speeds 2 = c − c0. This system follows from the canonical equations with
Hamiltonian function

H(u; p) =
p2

2(� + 	2(2− u))
− 2
2
u2 +

1
2
u3; (5.7)

where the momentum p canonically conjugate to u is de6ned by p = (� + 	2(2 − u))u′. Regular
equilibria are de6ned by @H=@u= @H=@p=0. They have p=0 and u=0 or u=22=3. There also
can exist singular equilibria de6ned by the vanishing of �+	2(2−u) and in addition the right-hand
side of (5.6).
To include the singular equilibria in the discussion it is better to use the energy expressed in

terms of the variables u and u′ instead of the canonical variables u and p in the Hamiltonian. In
addition we perform a scaling of u and s such that

u=Vũ; u′ =
2
|	| ũ

′: (5.8)

After this scaling the single remaining dimensionless parameter is

r =
�

|	|22: (5.9)

Note that if 2¡ 0 then this rescaling changes elevations travelling to the left into depressions
travelling to the right, and vice versa. This transformation is not canonical; however, for discussing
critical points this is not important. Scaling the energy with 23 yields (after dropping the tildes)

E±(u; u′) = 1
2((r ± (1− u))u′2 − u2 + u3): (5.10)

Here the subscript ± denotes the sign of 	2. The equilibria are now given by the critical points of the
energy (5.10). We note that 	2¡ 0 is admitted; in our derivation of Eq. (3.16) we de6ned 	2 = 'h2

(3.17). Thus the sign of 	2 is entirely determined by ' which is de6ned in (3.9), so that '¡ 0
for �∈ (1=3; �	), see (3.19). We note that for negative ' the Helmholtz operator is not smoothing
anymore. Also note that the dispersion relation possesses a pole in this case. Non-invertibility of the
Helmholtz operator in the case 	2¡ 0 does not exclude this case. In the transformations used for
the derivation of Eq. (3.16), the inverse Helmholtz operator does not occur. Eq. (3.16) can also be
transformed into Eq. (2.19) (or into (4.3)) by means of re-substituting time derivatives.
The parameter r allows a classi6cation of diGerent solution types in a simple way. E± has two

critical points which are independent of r, namely

u′ = 0 and either u= 0; or u= 2
3 ; (5.11)

with corresponding critical values of the energy 0 and −2=27, respectively. In general, the solution
types are diGerent for positive and negative 	2.

5.3. Case 1: 	2¿ 0

This case possesses two r-dependent singular critical points for which

u′ =±
√
3u2c − 2uc and u= uc = 1 + r; (5.12)
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Table 1
Type of critical points for 	2¿ 0, also see Fig. 2

u: 0 2=3 1 + r order

r ¿ 0 ×t ◦ × × ◦ |
0¿r¿− 1=3 ×c ◦ ×p × ◦ |
−1=3¿r¿− 1 ×c ×c — ×|×
−1¿r¿− 4=3 ◦ ×c ×p | ◦ ×
r ¡− 4=3 ◦ ×t × | ◦ ×
(◦) points: stable, (×) points: unstable. The subscript denotes the type of

separatrix: t, travelling wave; p, periodic peakon, c, cuspon.

Table 2
Type of critical points for 	2¡ 0, also see Fig. 3

u: 0 2=3 1− r order

r ¿ 1 ×ct ◦ — | × ◦
1=3¡r¡ 1 ◦ ◦ ×pp ◦|◦
r ¡ 1=3 ◦ ×tc — × ◦ |
The index denotes the two (!) possible separatrices.

provided 3u2c−2uc¿ 0. These critical points only exist, provided either r ¡−1, or r ¿−1=3. Their
critical value is r(1 + r)2=2. Stability of the critical points (5.11) is determined by the sign of the
determinant of the Hessian of the energy. The determinant at theses critical points is

D(E+) = (3u− 1)(r + 1− u): (5.13)

Varying r allows one to change the stability properties of the critical points (5.11) and the existence
of the additional critical points (5.12), see Tables 1 and 2.
Fig. 2 shows typical pictures of the phase portrait in the phase plane u′ versus u. In all pictures

only some solutions that correspond to bounded travelling waves are shown in addition to all critical
solutions. The top row shows the generic phase portraits, while in the bottom row the bifurcation
values are illustrated.
Solutions corresponding to critical values of E are called peakons if they have a 6nite jump in

6rst derivative of u and are called cuspons if the derivative at the jump diverges.
The main feature of Fig. 2 is a homoclinic orbit to the origin u=0, u′=0 with zero energy. The

origin is unstable and the equilibrium u′=0, u=2=3 is stable. In Table 1, 6rst row, the corresponding
unstable point is denoted by (×), the stable one by (◦). The singular line is located at u=uc =1+ r.
In Fig. 2a the parameter r is large enough that the singular line u = uc is well separated from the
value u= 1 where the homoclinic orbit of the origin crosses the u′ = 0-axis. Varying r so that the
singular line u= uc moves closer to the rightmost point u=1 of the separatrix of the origin gives a
travelling wave with a more and more pronounced peak. For the limiting case r = 0 which de6nes
the peakon limit, the travelling wave shows a jump in the 6rst derivative as shown in Fig. 2f. The
travelling wave is now a peakon. One can vary r even further towards negative r to obtain the
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Fig. 2. Phase portraits for 	2¿ 0. There are 5 diGerent cases (a)–(e) depending on the value of r, cmp. Table 1.

scenario depicted in Fig. 2b which allows for cuspons and periodic peakons. If r ¿− 1=3 we have
the two additional critical points (5.12) and if in addition r ¡ 0 these critical points correspond to
periodic peakons. The origin u = 0 which has E = 0 de6nes now a cuspon which has an in6nite
slope. For −1¡r¡ − 1=3 the critical point at u = 2=3 becomes unstable and we have now two
cuspons; one describing elevations and the other de6ning depressions. The typical phase portrait of
this scenario is depicted in Fig. 2c. We can push the singular line uc further across the u′-axis, by
allowing r ¡−1 which is shown in Fig. 2d. Now we have a cuspon de6ning a depression wave and
again periodic peakons corresponding to the additional critical points (5.12). The separatrix of these
points reconnects if their energy equals the energy of the unstable saddle. Simple algebra shows that
this is the case for r=−4=3. At this r-value the periodic peakons vanish and the cuspon degenerates
into a peakon as depicted in Fig. 2i. For r ¡ − 4=3 a homoclinic orbit corresponding to smooth
travelling waves of depression emerges as shown in Fig. 2e. We note here that the phase portraits in
the original variables for these waves are re?ected around the u′-axis when 2¡ 0. E.g. when 2¡ 0
and the Bond number is larger than �	, the case r ¿ 0 is in fact a depression wave. Such scenarios
for a similar, but diGerent, equation have been studied in detail in Qian and Tang (2001). Another
system which admits coexistence of regular solitary waves, peakons and cuspons has been studied
in Grimshaw et al. (2002).

5.4. Case 2: 	2¡ 0

In Fig. 3 we show the diGerent solution types for negative 	2. Again we show solutions that lead
to compact (in u!) solutions of generic type in the top row and of special type in the bottom row.
In addition to (5.11) there are two r dependent singular critical points for which

u′ =±
√

−(3u2c − 2uc) and u= uc = 1− r; (5.14)
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Fig. 3. Phase portraits for 	2¡ 0, cmp. Table 2.

provided 3u2c −2uc¡ 0. Therefore these critical points only exist if 1=3¡r¡ 1. Their critical value
is r(1 − r)2=2. The stability of the two r-independent critical points (5.11) is determined by the
determinant of the Hessian

D(E−) = (3u− 1)(r − 1 + u): (5.15)

Taking into account the condition for the existence of the additional critical points (5.14) we 6nd
that for r ¿ 1 we have travelling waves described by the homoclinic orbit with energy E = 0. This
is the regular solitary wave.
In Fig. 3d the singular line collides with the equilibrium and this gives rise to the compactons

6rst found by Li et al. (1999). This happens again at r = 1=3, see Fig. 3e.
If 1=3¡r¡ 1 both critical points (5.11) are stable and the additional critical points (5.14) exist

only in this r-interval. The phase portrait Fig. 3b shows two periodic peakons, one being an elevation
wave train, the other being a depression wave train. Further variation of r with r ¡ 1=3 allows for
depression travelling waves. We stress here that again the sign of 2 ?ips the pictures in the original
variables.

5.5. Parameterisation of travelling waves

In Section 6, the physical relevance of these solution and their observability is investigated. We
shall see that not all mathematically admissible solutions correspond to physically observable solu-
tions.
The energy may be rewritten as

2E± =±u′2(uc − u) + u3 − u2:
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By an additional transformation of the independent variable (ds=d4)2=uc−u if 	2¿ 0, or (ds=d4)2=
u− uc if 	2¡ 0 this can be reduced to the simple equation

du
d4
=
√

u3 − u2 − 2E: (5.16)

This change of independent variable is called a Sundman transformation in the classical mechanics
literature. For E=0 and for E=−2=27, the right-hand side has double roots, so that the solution is
given by (hyperbolic) trigonometric functions. Note that the parameter r is now completely hidden in
the transformation from s to 4. Obviously this scaling fails for u=uc, so that the solutions asymptotic
to the singular equilibria have to be treated separately.
For E = 0 Eq. (5.16) has the well known solution

u(4) = sech2 4=2: (5.17)

Substituting this solution into the Sundman transformation leads to
∫
(±(uc − sech2 4=2))1=2 d4. This

becomes an elementary integral after the substitution v = sinh2 4=2. The scaled “time”-variable for
	2¿ 0 and r ¿ 0 is

s(4)
2
=
√
uc sinh−1

(
sinh 4=2√
1− 1=uc

)
− tanh−1

(
tanh 4=2√

tanh2 4=2 + uc − 1

)
;

while for 	2¡ 0 and r ¿ 1 it is

s(4)
2
=
√−uc sinh−1

(
sinh 4=2√
1− 1=uc

)
+ tan−1

(
tanh 4=2√

1− uc − tanh2 4=2

)
:

Note that these expressions are still written down in the scaled coordinates. Going back to the
original u we have to multiply the right-hand sides by 2 for u and by |	| for s. The curvature at
the maximum is −1=2r. In the original variables we 6nd −22=2� instead. The curvature depends
essentially on �, and diverges when � → 1=3, corresponding to r → 0. The curvature is the same
as for the ordinary KdV soliton. For 	2¡ 0 the curvature has the opposite sign.
The pulse-solutions (5.17) are solitary waves and inherit the properties such as elastic interaction

by its two limiting equations. In fact, in Dullin et al. (2001) the spectral scattering problem is stated
that allows an exact analytical treatment of initial value problems and wave interactions. 1 A typical
picture of a collision of these solitary waves is shown in Fig. 4. We note that travelling waves with
c0 �= 0 and � �= 0 are very close to KdV solitary waves. The initial condition for this picture (at
negative time not shown) was a Gaussian initial peak. After an elastic collision the only impact of
the collision is a phase shift of the interacting waves. In principle this phase shift may be determined
analytically by means of the inverse scattering technique. However, the Kodama transformation (3.1)
used in Section 3, in particular the non-local term,

ux

x∫
u(x′) dx′; (5.18)

relates the phase shift of the diGerent water wave equations to each other, i.e. equations (3.16), (4.3)
and (2.19); Kodama (2001). This may be seen by noting that the integral in (5.18) is diGerent after

1 Note, in the formula after Eq. (5.5) in Dullin et al. (2001), the term 1=(4	) should read 1=(4	2).
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Fig. 4. Elastic collisions of solitary waves for 	2 = 1:5, � = 0:0115; c0 = 0:001.

the collision and hence keeps track of the waves during the collision. Let us assume two waves
are about to collide. We integrate from negative spatial in6nity to the position of the wave crest
of the taller wave. The term (5.18) does not involve the second wave which is to the right of the
integration boundary. However, after the collision, the taller wave is to the right of the smaller wave
and in this case the integration domain in (5.18) from negative spatial in6nity to the wave crest of
the taller wave now includes the smaller wave, which provides information on the phase shift that
occurs during the collision.

6. Physical relevance

How much of the richness of solutions discovered in Section 5 actually occurs in nature? One
cannot claim that the solution types found in the travelling wave reduction are all present in the Euler
equation. For example with non-vanishing � any non-smoothness in the pro6le would be removed
by the curvature term proportional to � in (2.1). The following discussion should be understood in
the sense that the pro6les found are approximations to the true solutions.
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Fig. 5. The essential parameter r of (6.1) as a function of the Bond number � for (a) F ¿ 1 (supercritical, non-resonant
for �¡ 1=3) and (b) F ¡ 1 (subcritical, non-resonant for �¿ 1=3).

A discussion of the existence question may be phrased in terms of the two essential physical
parameters, namely the Bond number � and the Froude number F . In Fig. 1 we show typical
dispersion relations for �¡ 1=3 and �¿ 1=3. We focus on solitary waves which are not inside the
continuous spectrum (i.e. non-resonant, or non-embedded) for small k. Such solitary waves must
be supercritical (F ¿ 1) for �¡ 1=3 and subcritical (F ¡ 1) for �¿ 1=3. This relation between
the speed of the solitary wave and the surface tension is implicit in Eq. (3.16). The condition of
non-resonance states that the solitary wave moves faster (slower) than any linear wave with small k.
We now investigate the dependence of the parameter r on the Bond number � and the Froude

number F . Using the expressions for 	2 and � (3.17)–(3.18) we 6nd

r =
�

|	|22 =
10
1− F

(1− 3�)2
45�2 + 30� − 19 sign(	

2): (6.1)

The graph of this function is shown in Fig. 5. The �-axis is separated into 3 diGerent regions: The
interval (1=3; �	) in the middle in which we have 	2¡ 0, corresponding to Fig. 3, and two other
intervals, [0; 1=3) and (�	;∞), in which 	2¿ 0, corresponding to Fig. 2. Non-resonant travelling
waves are found for �¡ 1=3 if F ¿ 1, hence for r ¿ 0 in Fig. 5a, similarly for �¿ 1=3 if F ¡ 1,
hence again for r ¿ 0 in Fig. 5b. The physical signi6cance of embedded solitons, which occur for
r ¡ 0 is not clear, but it might be interesting to investigate it. We conclude that r ¿ 0 leaves only
travelling waves of the type depicted in Fig. 2a or Fig. 3a. All other cases with 	2¿ 0 and r ¡ 0
(Fig. 2b–e) are embedded solitons, which are beyond our present scope. It is pertinent to mention
that F ¡ 1 implies negative u (see (5.8)). Hence the travelling waves for �¿ 1=3 are waves of
depression whereas the waves for �¡ 1=3 and F ¡ 1 are elevations which is in accordance with the
numerical observations for the full water wave system discussed above.
Remarkably, the restriction to r ¿ 0 for �∈ (1=3; �	) still allows all cases shown in Fig. 3. Hence

beside the travelling waves, there are periodic peakons, shelf waves, cuspons and compactons. For
a given ?uid, the Bond number � is 6xed and the Froude number F is a free parameter for the
solution. For � in the two outer intervals the only non-embedded solitons are those of Fig. 2a. If,
however, �∈ (1=3; �	) changing F between 0 and 1 can produce the qualitatively diGerent solutions
of Fig. 3a–c. The standard soliton with r ¿ 1 is always possible for F suHciently close to 1. For
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�∈ (1=3; 1=9+4√10=45) periodic peakons are possible for suHciently small F . For �∈ (1=3; 5=21+
4
√
15=105) also the shelf waves of Fig. 3c are possible for suHciently small F . Since for � in this

interval viscous eGects are presumably already large it is not clear whether any of these solution
types are present in ?uids. But one may still ask the question whether the full Euler equations would
have similar solutions.
If 	2¡ 0 the Helmholtz operator is no longer invertible. However, this poses no problem for

the derived equations. As a matter of fact the inverse transformation back to � does not involve
the application of the inverse Helmholtz operator. Instead, it is achieved by simple substitution of
the time derivatives and the Kodama-transformation along the lines of Section 4 where KdV5 is
recovered from CH without the inversion of the Helmholtz operator. An issue here is the required
accuracy of the inversion. Since the exotic solutions for 	2¡ 0 exist only for � suHciently close
to 1=3 and the asymptotic expansion collapses for �= 1=3, the predictions for this case may not be
accurate. A study of the full Euler equations would be needed to resolve this issue. In this regard,
we recall the investigations reported in Benjamin (1982) of anomalies in solitary shallow water wave
behavior for � � 1=3.
We conclude that the peakon, which is the critical solution shown in Fig. 2f, apparently cannot

exist in water waves. This is because the critical condition r = 0 implies � = 0, and considering
(3.18) it follows that either the equilibrium depth vanishes, h0 = 0, or the acceleration of gravity
vanishes, g= 0. However, either of these conditions would invalidate the initial assumptions of the
derivation. The only other way to achieve �=0 is when �=1=3, but in this case ' (and hence 	2)
diverges.
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